
Planar Graphs: Random Walks and Bipartiteness Testing

Artur Czumaj∗
University of Warwick

Coventry, UK
A.Czumaj@warwick.ac.uk

Krzysztof Onak‡
CMU

Pittsburgh, PA, USA
konak@cs.cmu.edu

Morteza Monemizadeh†
University of Frankfurt

Frankfurt, Germany
monemizadeh@em.uni-frankfurt.de

Christian Sohler§
TU Dortmund

Dortmund, Germany
christian.sohler@tu-dortmund.de

Abstract—We initiate the study of the testability of properties
in arbitrary planar graphs. We prove that bipartiteness can be
tested in constant time. The previous bound for this class of
graphs was Õ(

√
n), and the constant-time testability was only

known for planar graphs with bounded degree. Previously used
transformations of unbounded-degree sparse graphs into bounded-
degree sparse graphs cannot be used to reduce the problem to the
testability of bounded-degree planar graphs. Our approach extends
to arbitrary minor-free graphs.

Our algorithm is based on random walks. The challenge here
is to analyze random walks for a class of graphs that has good
separators, i.e., bad expansion. Standard techniques that use a fast
convergence to a uniform distribution do not work in this case.
Roughly speaking, our analysis technique self-reduces the problem
of finding an odd-length cycle in a multigraph G induced by a
collection of cycles to another multigraph G′ induced by a set
of shorter odd-length cycles, in such a way that when a random
walks finds a cycle in G′ with probability p > 0, then it does so
with probability λ(p) > 0 in G. This reduction is applied until the
cycles collapse to self-loops that can be easily detected.

Keywords-property testing, bipartiteness, planar graphs, minor-
free graphs, constant-time algorithms

1. INTRODUCTION

Property testing studies relaxed decision problems in
which one wants to distinguish objects that have a given
property from those that are far from this property (see, e.g.,
[7]). Informally, an object X is ε-far from a property P if
one has to modify at least an ε-fraction of X’s representation
to obtain an object with property P , where ε is typically a
small constant. Given oracle access to the input object, a
typical property tester achieves this goal by inspecting only
a small fraction of the input. Property testing is motivated by

∗Research supported in part by the Centre for Discrete Mathematics and
its Applications (DIMAP), EPSRC award EP/D063191/1, by EPSRC award
EP/G064679/1, and by a Weizmann-UK Making Connections Grant “The
Interplay between Algorithms and Randomness.”†Supported in part by BMBF grant 06FY9097.‡Supported in part by a Simons Postdoctoral Fellowship and NSF grants
0732334 and 0728645.§Supported in part by the German Research Foundation (DFG), grant
So 514/3-2.

the need to understand how to extract information efficiently
from massive structured or semi-structured data sets using
small random samples.

One of the main and most successful directions in prop-
erty testing is testing graph properties, which was introduced
in papers of Goldreich et al. [8], [9]. There are two popular
models, which make different assumptions about how the
input graph is represented and how it can be accessed.

In the adjacency matrix model, designed typically for
dense graphs [8], it is known that testability of a property
in constant time is closely related to Szemerédi partitions of
the graph. In fact, one can show that a property is testable
in constant time, if and only if it can be reduced to testing
finitely many Szemerédi partitions [1].

The adjacency list model has been designed mostly for
sparse graphs. In the most standard scenario, it comes with
an additional restriction: the degree of the graph is assumed
to be at most a constant d [9]. It is not yet completely
understood what graph properties are testable in constant
time in this model. Known examples include all hyperfinite
properties [16] (see also [3] and [12] for previous general
results), connectivity, k-edge-connectivity, the property of
being Eulerian [9], and the property of having a perfect
matching [17]. On the other hand, some properties testable in
constant time in the dense graph model, such as bipartiteness
and 3-colorability, are known to require a superconstant
number of queries [4], [9].

Even less is known about efficiently testable properties
for sparse graphs that do not have a degree bound. It turns
out the constant degree bound in the adjacency list model
is essential for many of the results mentioned above. All
constant-time testers mentioned above use the fact that in a
graph with constant maximum degree one can grow some
form of a BFS tree of constant depth and then decide based
on the obtained information. It is known that connectivity,
k-edge-connectivity, and Eulerian graphs are testable in con-
stant time [15]. However, no general results characterizing
constant-time testable properties are known.

Bipartiteness: The problem of testing bipartiteness has
been a great benchmark of the capabilities of property testing
algorithms in various graph models. It was one of the first
problems studied in detail in both the dense graph model
[8] and the sparse graph model [9], [10]. Bipartiteness is
known to be testable in Õ(1/ε2) time in the dense graph
model [2], but in the sparse graph model, it requires Ω(

√
n)

queries [9] and is testable in Õ(
√

n · ε−O(1)) time [10].
Kaufman et al. [13] show that the property is still testable
in Õ(

√
n · ε−O(1))) time in the adjacency list model for

graphs that have constant average degree.
Czumaj et al. [5] show in the bounded-degree model that

if the underlying graph is planar, then any hereditary graph
property1, including bipartiteness, is testable in constant
time. This approach can be generalized to any class of
graphs that can be partitioned into constant-size components
by removing εn edges of the graph, for any ε > 0.
Graphs satisfying this property are called hyperfinite, and
they include all bounded-degree minor-free graphs.

Hassidim et al. [12] show that in fact, the distance to
most hereditary properties can be approximated in constant
time in such graphs. These results are generalized in the
recent work of Newman and Sohler [16], who show that in
hyperfinite graphs, one can approximate the distance to any
graph property. In particular, this implies that any graph
property is testable in hyperfinite graphs, and therefore,
bounded-degree planar graphs.

The central goal of this paper is to initiate the research
on the complexity of testing graph properties in general
unbounded degree minor-free graphs. Our main technical
contribution is the design and analysis of a constant time
algorithm testing bipartiteness in arbitrary planar graphs. We
show that a constant-length random walk from a random
vertex discovers an odd-length cycle in a graph far from
bipartite with constant probability. The result easily extends
to an arbitrary family of minor-free graphs.

1.1. Techniques

Our approach is based on a new analysis technique for
random walks in planar (and minor-free) graphs. We first
show that a planar graph that is far from bipartiteness has a
linear number of edge-disjoint cycles of constant odd-length.
Then we show a contraction procedure that preserves up
to a constant factor the probability of discovering an odd-
length cycle by a random walk. We show that after a constant
number of contractions we obtain a multigraph in which the
probability of discovering an odd-length cycle is constant.

1.2. What does not work

Given that bipartitness can be tested in constant time in
planar graphs of bounded degree [5], it may seem that there
is a simple extension of this result to arbitrary degrees. We

1A graph property is hereditary if it is closed under vertex removals.

(a) (b)

Figure 1. An example of the process of splitting a vertex that reduces
any graph into a graph of maximum degree at most 3 and that maintains
planarity. For the graph in (a), figure (b) depicts the splitting that is invariant
to being bipartite.

(a) (b) Removed edges

Figure 2. An example showing that the splitting from Figure 1 can reduce
the distance from being bipartite. The planar graph in (a) (in which the
ith top vertex from the left is connected by an edge to the ith top vertex
from the right) has Θ(n) edge-disjoint cycles of length 3 and is ε-far from
bipartite (one has to remove at least n−1

2
edges to obtain a bipartite graph).

However, after the splitting, the obtained graph can be made bipartite just
by removal of two edges: Figure (b) depicts a bipartite graph obtained after
removal of one of the two edges at the bottom and the middle edge in the
split part.

now describe simple attempts at reducing our problem to
testing bipartiteness in other classes of graphs. We explain
why they fail, and we hope this will justify our believe that
new techniques are necessary to address the problem.

Transforming into a constant-degree planar graph:
Perhaps the first, and possibly the simplest, approach would
be to extend a constant-time algorithm for bounded-degree
graphs from [5]. This could be achieved by first transforming
an input planar graph G with an arbitrary maximum-degree
into a planar graph G∗ with bounded-degree and then
running the tester for G∗ to determine the property for G.
However, we do not see any transformation that could work
and we do not expect any such transformation to exist.

For example, it is known that one can transform any graph
into one with maximum degree at most 3 by splitting every
vertex of degree d greater than 3 into d vertices of degree
3. It is also easy to ensure that this reduction maintains
the planarity, and also the property of being bipartite (see
Figure 1). However, there are two properties that are not
maintained: one is the distance from being bipartite (see
Figure 2) and another is that the access to the neighboring
nodes requires more than a constant time (though this can
be “fixed” if one allows each vertex to have its adjacency
list ordered consistently with some planar embedding). In
particular, Figure 2 depicts an example of a planar graph
that is ε-far from bipartite, but after the transformation it
suffices to remove 2 edges to obtain a bipartite graph.

Substituting high-degree vertices with expanders: An-
other transformation of the graph is considered by Kaufman

et al. [13]. They replace every high degree vertex with a
constant-degree bipartite expander. While they prove that
this construction preserves the distance, it is clear that it
cannot preserve the planarity, since planar graphs are not
expanders. For expanders, testing bipartiteness can take as
much as Ω(

√
n) queries [9].

2. PRELIMINARIES

Let G = (V, E) be a simple planar graph with n = |V |.
A graph is bipartite if one can partition its vertex set into
two sets A and B such that every edge has one endpoint in
A and one endpoint in B. We will also frequently use the
well known fact that a graph is bipartite if and only if it has
no odd-length cycle.

We now formally introduce the notion of being far from
bipartiteness2. The notion is parameterized by ε.

Definition 1: A planar graph G = (V, E) is ε-far from
bipartite if one has to delete more than εn edges from G to
obtain a bipartite graph.

We are interested in finding a property testing algorithm
for bipartiteness in planar graphs, i.e., an algorithm that
inspects only a very small part of the input graph, and ac-
cepts bipartite planar graphs with probability at least 2

3 , and
reject planar graphs that are ε-far away from bipartite with
probability at least 2

3 , where ε is an additional parameter.
Our algorithm always accepts every bipartite graph. Such

a property tester is said to have one-sided error.
The access to the graph is given by an oracle. We consider

the oracle that allows two types of queries:

• Degree queries: For every vertex v ∈ V , query the
degree of v.

• Neighbor queries: For every vertex v ∈ V , query its
i-th neighbor.

Observe that by first querying the degree of a vertex, we can
always ensure that the i-th neighbor of the vertex exists in
the second type of query. In fact, in the algorithm that we
describe in this paper, the neighbor query can be replaced
with a weaker type of query: random neighbor query, which
returns a random neighbor of a given vertex v; each time
the neighbor is chosen independently, uniformly at random.
Finally, we assume that all the above queries take constant
time.

In the remainder of the paper we use several constants
depending on ε. We use lower case Greek letters to denote

2The standard definition of being ε-far (see for example the definition in
[13]) expresses the distance as the fraction of edges that must be modified
in G to obtain a bipartite graph. Compared to our Definition 1, instead
of deleting εn edges, one can delete εm edges, where m is the number
of edges. For any class of graphs with an excluded minor, the number of
edges in the graph is upper bounded by C · n, where C is a constant.
Moreover, unless the graph is very sparse (i.e., most of its vertices are
isolated, in which case even finding a single edge in the graph may take a
large amount of time), the number of edges in the graph is at least Ω(n).
Thus, under the standard assumption that m = Ω(n), the ε in our definition
and the ε in the previous definitions remain within a constant factor. We
use our definition of being far for simplicity.

constants that are typically smaller than 1 (e.g., δi(ε)) and
lower case Latin letters to denote constants that are usually
larger than 1 (e.g., fi(ε)). All these constants are always
positive.

2.1. Basic lemmas

We begin with a lemma that trivially follows from the
Klein-Plotkin-Rao decomposition theorem [14].

Lemma 2: Let G = (V, E) be a simple planar graph
and let δ be a parameter in (0, 1). There is a set of at
most δ|E| edges in G whose deletion decomposes G into
connected components where the distance (in the original
graph) between any two nodes in the same component is
O(1/δ2).

Lemma 2 leads to the following key property of planar
graphs that are ε-far from bipartite.

Lemma 3: Let G be a simple planar graph. If G is ε-far
from bipartite, then G has at least εn

q(ε) edge-disjoint odd-
length cycles of length at most 1

2q(ε) each, where q(ε) =
O(1/ε2).

Proof: We define q(ε) such that q(ε) ≥ 6 and 1
6q(ε) is a

bound on the diameter (in the original graph) of components
in the decomposition given by Lemma 2 with δ = 1

2ε.
We find the cycles one by one. Suppose that we have

already found in G a set of k edge-disjoint odd-length cycles
of length at most 1

2q(ε) each, where k < εn
q(ε) . We show the

existence of one more such cycle, which by induction yields
the lemma.

Let G∗ be the subgraph of G obtained by removing the
k edge-disjoint odd-length cycles of length at most 1

2q(ε)
each. Since k < εn

q(ε) , G∗ is ε/2-far from bipartite. Apply
Lemma 2 to G∗ with δ = 1

2ε and let H be the resulting
decomposition. Since G∗ is ε/2-far from bipartite, H is not
bipartite. Let us consider a connected component CH of H
that is not bipartite and let v be a vertex from CH . Build a
BFS tree from v in G∗. Since CH is not bipartite, there must
be two vertices u1 and u2 in CH that have the same distance
from v and that are connected by an edge in H (otherwise,
we could define a bipartition of CH by the parity of the
distance from v in the BFS tree). Let v′ be the last common
vertex on the paths from v to u1 and from v to u2 in the
BFS tree. The tour that starts at v′, goes to u1 via the BFS
tree edges, then takes the edge connecting u1 and u2, and
finally returns to v′ via the BFS tree edges is a odd-length
cycle of length at most 1

3q(ε) + 1 ≤ 1
2q(ε).

3. ALGORITHM RANDOM BIPARTITNESS EXPLORATION

We now give our algorithm for testing bipartiteness of
planar graphs with arbitrary degree and provide an overview
of its analysis. A detailed proof appears Sections 4 and 5.

Random Bipartiteness Exploration (G, ε):
• Repeat f(ε) times:

– Pick a random vertex v ∈ V
– Simulate a random walk of length g(ε) from v
– If the random walk found an odd-length cycle, then

reject
• If none of the random walks found an odd-length

cycle, then accept

Theorem 4: There are functions f and g such that

• if G is bipartite then Random Bipartiteness Exploration
(G, ε) accepts G, and

• if G is ε-far from bipartite then Random Bipartitness
Exploration (G, ε) rejects G with probability at least
0.99.

Let us first observe that the first claim is obvious: if G
is bipartite, then every subgraph of G is bipartite as well,
and Random Bipartitness Exploration always accepts. Thus,
to prove Theorem 4, it suffices to show that if G is ε-far
from bipartite, then Random Bipartitness Exploration rejects
G with probability at least 0.99.

Therefore, from now on, we assume that the input graph
G is ε-far from bipartite. Then by Lemma 3, we know
that G has at least εn

2q(ε) edge-disjoint odd-length cycles
of length at most q(ε) each, where q(ε) = O(1/ε2). Let
us denote by C� any such set of edge-disjoint odd-length
cycles. Thus, to complete the proof, it suffices to show that
Random Bipartitness Exploration finds one of the odd-length
cycles from C� (with probability at least 0.99).

Unfortunately, this approach applied directly cannot work,
as one can see in Figure 3. Instead, we prove a sufficient
result that Random Bipartitness Exploration finds a short
odd-length cycle that is a combination of the cycles from
C� (with probability at least 0.99).

Finally, note that it suffices to show that a single ran-
dom walk of length g(ε) finds an odd-length cycle with
probability at least 5/f(ε). This immediately implies that
f(ε) independent random walks detect at least one odd-
length cycle with probability at least 1− (1−5/f(ε))f(ε) ≥
1 − e−5 ≥ 0.99.

3.1. Overview of the analysis

The proof of Theorem 4 is split into two sections. First, in
Section 4, we reduce the problem, along the lines described
above, to that of finding an odd-length cycle in a subgraph
of the original graph G that is induced by a linear num-
ber of edge-disjoint odd-length cycles of constant length.
Once we have this reduction, we next consider weighted
graphs and multigraphs induced by odd-length cycles. These
multigraphs result from the original set by cycle removals
and certain edge contractions. A vertex with weight w in
such a multigraph stands for a set of w vertices in the

Figure 3. A planar graph G with n−5
6

edge-disjoint odd-length cycles.

Each of the five high degree vertices has degree exactly 2(n−5)
6

, and the
edge-disjoint cycles are of length 11 each. Observe that if C� is any fixed
set of n−5

6
edge-disjoint cycles of length 11, then the probability that a

single constant-length random walk discovers one of the cycles in C� is
polynomially small. Nevertheless, a single random walk of length, say, 12
finds an odd-length cycle with probability at least 2−11.

original graph, and weighted sampling from the vertices
is equivalent to uniform sampling in the original graph.
Thus, each multigraph represents a possibly contracted set
of cycles from the original graph. We show in Section 5 that
for any such multigraph induced by a linear number of odd-
length cycles, we can remove a constant fraction of cycles
such that every remaining cycle can be contracted without
interfering with other cycles. This reduces the length of these
cycles by one. Furthermore, if a random walk finds a cycle in
the remaining cycles with probability p, then it does so with
probability η(p) in the original set. Thus, if we apply this
technique until all cycles are self-loops, we can easily prove
that a random walk finds such a self-loop and our reduction
ensures that this happens with constant probability for the
original graph.

4. FIRST REDUCTION: DEALING WITH GRAPHS INDUCED

BY ODD-LENGTH CYCLES

Let C be a set of cycles on a vertex set V . We denote by
G(C) the graph induced by C. That is, G(C) = (V, EC) with
EC being the set of the edges from the cycles in C.

Our first lemma states that in order to show that an l-
step random walk from a random start vertex finds an odd-
length cycle in a planar graph G that is ε-far from bipartite,
it suffices to show that the random walk finds an odd-length
cycle in a subgraph of G induced by a linear number of
edge-disjoint odd-length cycles of constant length.

Lemma 5: Let G = (V, E) be a simple planar graph that
has a set C∗ of at least αn edge-disjoint odd-length cycles in
G and let l > 0 be an integer. There there is ζ = ζ(l, α) > 0
and there is a subset C of C∗ of size at least 1

2αn such that

• if the probability that an l-step random walk in G(C)
starting from a random vertex finds an odd-length cycle
in G(C) is p, then

• the probability that an l-step random walk starting from
a random vertex finds an odd-length cycle in G is at
least ζ · p.
Proof: To construct the subset C, we first delete some

cycles from C∗. The process of deleting the cycles is based
on the comparison of the original degree of the vertices with
the current degree in G(C∗). To implement this scheme, we
write degG(v) to denote the degree of v in the original graph
G and we use the term current degree of a vertex v to denote
its current degree in the graph G(C∗) induced by the current
set of cycles C∗.

We repeat the following procedure as long as possible:
if there is a vertex v ∈ V with current degree in G(C∗) at
most 1

12α degG(v), then we delete from C∗ all cycles going
through v in C∗. To estimate the number of cycles deleted,
we charge to v the number of deleted cycles in each such
operation.

Let C be the remaining set of cycles from C∗. Observe that
each v ∈ V can be processed above at most once. Indeed,
once v has been used, it becomes isolated and hence it is
not used again. Therefore, at most 1

12α degG(v) cycles from
C can be charged to any single vertex. This, together with
the inequality

∑
v∈V degG(v) ≤ 6n by planarity of G(C∗),

implies that the total number of cycles removed from C∗
is upper bounded by

∑
v∈V

1
12α degG(v) ≤ 1

2αn. Since
|C∗| ≥ αn, we conclude that |C| ≥ |C∗| − 1

2αn ≥ 1
2αn.

We have constructed a subset C of C∗ of size at least
1
2αn such that for every vertex v ∈ V , either v is isolated
in G(C) or its degree is greater than 1

12α degG(v) (i.e., at
least α

12 fraction of its original degree in G). We now use
this property to show that if the probability that an l-step
random walk starting from a random vertex in G(C) finds
an odd-length cycle is p, then an l-step random walk starting
from a random vertex in G finds an odd-length cycle with
probability at least p·ζ, for appropriately chosen ζ = ζ(l, α).
This will yield the theorem.

Let us consider a fixed sequence of l + 1 vertices
〈x0, x1, . . . , xl〉 in G(C∗) with (xi, xi+1) ∈ EC , 0 ≤ i ≤
l− 1, that contains an odd-length cycle c. Our claim is that,
if the probability of this fixed sequence to be chosen as an
l-step random walk in G(C) is p′ then it is at least ζ · p′ in
G.

Since x0 is one of the starting vertices, and since x0

cannot be isolated in G(C) (because G(C) has edge (x0, x1)),
we must have degG(C)(x0) > α

12 degG(x0). Therefore, when
the random walk in G chooses a neighbor of x0, it chooses
x1 with probability at least α

12 times the probability that the
random walk in G(C) chooses x1. The same arguments can
be used to argue that if the random walk in G has chosen
any vertex xi, then it also chooses xi+1 with the probability
at least α

12 times the respective probability for the random

walk in G(C). Therefore, if the random walk in G(C) is
chosen with probability p′ then the probability of choosing
the same random walk in G is at least (α

12)l · p′. Summing
up over all sequences of l + 1 vertices 〈x0, x1, . . . , xl〉 in
G(C) with (xi, xi+1) ∈ EC , 0 ≤ i ≤ l − 1, and that contain
an odd length cycle, we obtain the claim with ζ = (α

12)l.
Due to Lemma 5, we now turn our attention only to graphs

and multigraphs induced by odd-length cycles.

5. SECOND REDUCTION: ANALYSIS FOR GRAPHS AND

MULTIGRAPHS INDUCED BY ODD-LENGTH CYCLES

We continue with the assumption that the input graph G
is planar and ε-far from bipartite. By Lemma 3 we know
that this graph contains at least εn/q(ε) cycles of length
�(ε) := q(ε)/2 for a q(ε) = O(1/ε2). Let C∗ be such a set
of cycles. We use the set C∗ and apply Lemma 5. Lemma 5
states that, in order to show that a random walk finds (with
constant probability) an odd-length cycle in G, it is enough
to show that a random walk finds (with constant probability)
an odd-length cycle in the graph G(C) induced by a set
C ⊆ C∗ of α(ε)n edge-disjoint odd-length cycles in G,
α(ε) := ε/(2q(ε)). Furthermore, by our choice of C∗ each
cycle in C has length at most �(ε). Thus, in the following we
assume that a set of cycles C with such properties is given
and we show that with constant probability a random walk
finds a cycle in the graph G(C). By choosing an appropriate
function f in algorithm Random Bipartiteness Exploration,
this constant can be made arbitrarily close to one.

To show that a random walk finds a cycle with constant
probability, we use a second reduction. We now give some
intuition for this second reduction.

5.1. Overview

We first observe that, if all vertex degrees in G(C) are
constant, then a single random walk finds a cycle with con-
stant probability. This is because with constant probability
the starting vertex is on some cycle C of C and in each
step we follow C with constant probability. Since C is a
cycle of length at most �(ε), the observation follows. Thus,
the hard part is to deal with vertices whose degree is not
constant. An example that captures many of the difficulties
of the problem is given in Figure 3. In this example, we
have many parallel cycles that intersect at several vertices
of high degree. However, many vertices of the cycles also
have constant degree. By the linear bound on the number
of edges in a planar graph, this is the case for any planar
graph.

Our main idea is now to contract paths of length 2 whose
middle vertex has constant degree to a single edge. The
motivation behind this contraction is that if a random walk
takes the first edge of such a path, then with constant
probability it also follows the second edge. Thus, from the
point of the analysis of the random walk, we can view this
path as a single edge. Furthermore, since many cycles must

have at least one subpath whose middle vertex has constant
degree, we can make sure that a constant fraction of cycles
has at least one subpath that is contracted. If we only keep
the cycles of C that have been contracted, we end up with
a linear-size set C′ of cycles with length reduced by at
least 1. Furthermore, since planarity is closed under edge
contraction and edge removal, the graph G(C′) is planar
again. This allows us to repeatedly apply our reduction until
all cycles collapse to self-loops. Such a repeated application
may be necessary since G(C′) may still have vertices of high
degree. Then since a constant fraction of edges belongs to
self-loops, a random walk traverses a self-loop with constant
probability and so, by the properties of our reductions, with
constant probability a random walks finds a cycle in the
original graph.

In the following, we develop a framework that formalizes
our idea. In particular, we need to deal with the following
technical problems.

• The starting vertex of a random walk in G = (V, E) is
chosen uniformly at random from V . Edge contractions
change this probability. We use vertex weights to keep
track of this change in probability.

• We are interested in finding cycles of odd length. Thus,
if we contract a path of length 2 to a single edge, this
changes the parity of all cycles that contain this path
from odd to even or vice versa. In order to keep track
of these changes we assign parities to edges (at the
beginning all parities are odd). If we contract two odd
edges or two even edges, the resulting edge is even.
Otherwise, it is odd.

• We need to remove parallel edges to exploit planarity
in the contracted graphs. For this purpose, we introduce
edge weights such that the weight of an edge (v, u) can
be interpreted as the number of parallel edges between
v and u.

5.2. The framework

We begin with a set of definitions and concepts used later
in our analysis.

In this section we consider multigraphs, i.e., graphs with
parallel edges. We also allow self-loops. We sometimes rep-
resent a multigraph as an edge-weighted graph, whose edge
weights correspond to the multiplicity of the edges (edge-
weighted graphs may have self-loops). We also consider
weighted graphs whose vertices and edges have weights.

We extend our definition of graphs induced by cycles
(Section 4) to multigraphs. Let C be any multiset of cycles
on vertex set V . We allow the cycles in C to share edges.
We denote by G(C) the multigraph induced by C, that is,
G(C) = (V, EC) is a multigraph with EC being the set of
the edges on the cycles in C; if an edge e appears in multiple
cycles in C then the same number of copies of e appears in
EC .

For the study of bipartiteness, we consider labeled graphs
or multigraphs, where each edge of a graph or a multigraph
is labeled either odd or even. The intuition is that if an edge
has label odd (or even), then this edge corresponds to an
odd-length (or even-length, respectively) path (or a cycle, in
the case when the edge is a self-loop) in the original graph.
We also define an operation of XOR on a set of edge labels
L: if the number of labels odd in L is even then the XOR

returns label even; otherwise, it returns label odd. We call
a path or a cycle even if the number of labels odd on its
edges is even; it is called odd otherwise.

A pair of vertices 〈x, y〉 is called τ -parity balanced for C
if either all parallel edges (x, y) in G(C) have the same parity
(that is, all are odd, or all are even), or the ratio between
odd parallel edges (x, y) and even parallel edges (x, y) in
G(C) is at least τ and at most 1

τ .
Random walks on multigraphs: A random walk in a

multigraph selects at each vertex every edge incident to
this vertex with the same probability. The probability that
a single step of a random walk moves from v to u equals
the number of edges between v and u divided by the total
number of edges (with multiplicities) that are incident to v.

5.2.1. Contractions of cycles, cycle-minors, and off-
springs: In our analysis, we apply a sequence of contrac-
tions to the graph/multigraph induced by a set of cycles.
This operation contracts some paths to edges and simplifies
the structure of the graph, as needed in our analysis. We
begin with definitions used.

If C is a set of cycles on V , then for every v ∈ V , we
denote by Cv the set of cycles in C going through v.

Loop vertices: Let C be any set of cycles on a vertex
set V . We say a vertex v ∈ V is a loop vertex (with respect
to C) if Cv 	= ∅ and every cycle in Cv is a self-loop at v.

Contractible vertices: Let C be any set of cycles on a
vertex set V . We say a vertex v ∈ V is contractible (with
respect to C) if Cv 	= ∅, and there are two vertices x, y ∈ V
(it is allowed that x = y), such that every cycle in Cv enters
v through vertex x and leaves v through vertex y.

Cycle contraction at a vertex: Let C be any set of cycles
on a weighted vertex set V . Let v be a contractible vertex
with respect to C. Let x, y be two vertices in V , such that
every cycle in Cv enters v through vertex x and leaves v
through vertex y. Modify every cycle c ∈ Cv by contracting
path 〈x, v, y〉 into edge (x, y), such that the label of the new
edge is the XOR of the labels of edges (x, v) and (v, y) from
c. We call the path 〈x, v, y〉 the offspring of the obtained
new edge (x, y). Let C∗v be the resulting set of cycles. Then
for a set C of cycles on a weighted vertex set V , cycle
contraction at a vertex v ∈ V is the operation of replacing
C by C\Cv∪C∗v , and changing the weight of vertices v, x, y ∈
V by distributing the weight of v equally to vertices x and
y, and then zeroing the weight of v. (In particular, if x = y
(i.e., (x, y) is a self-loop) then the weight of x increases by
the weight of v.)

Definition 6 (Cycle-minor): Let C be a set of labeled
cycles on a weighted vertex set V . Any set C′ of labeled
cycles on a weighted vertex set V obtained from C by
applying an arbitrary sequence of cycle removals and cycle
contractions at a vertex is called a cycle-minor of C.

The following observation will be crucial for our second
reduction. It follows from the fact that planarity is closed
under contraction of edges and removal of edges (and
vertices).

Observation 7: If C is a collection of cycles such that
G(C) is planar, then for any cycle minor C′ of C, the
multigraph G(C′) represented as an edge weighted graph is
planar.

Let us state some further useful properties of vertex
weights in cycle-minors.

Lemma 8 (Vertex-weight Lemma): Let C be an edge-
disjoint set of cycles on a weighted vertex set V with
weight(v) = 1 for every v ∈ V and such that G(C) is planar.
Then any cycle-minor C′ of C on a weighted vertex set V
satisfies the following:

(i)
∑

v∈V weight(v) = |V |,
(ii) if weight(v) = 0 then vertex v is isolated,

(iii) if every vertex in G(C∗) is either isolated or is a loop
vertex, then for every self-loop (v, v) in G(C∗) with
multiplicity k ≥ 1, it holds that weight(v) ≥ k.
Proof: We first observe that any operation of cycle

deletion does not change the total weight of the vertex set,
which yields the first property. Further, any cycle contraction
at a vertex decreases the weight of a vertex v only if v
becomes isolated; in that case weight(v) becomes 0, what
yields the second property.

Now we prove the third property. Observe that without
loss of generality, we can obtain the cycle-minor C′ of C
on a weighted vertex set V by first deleting some cycles
and then performing only contractions. Let us fix a self-
loop (v, v) and let us consider the sequence of contractions
that lead to the creation of k copies of (v, v) (since these
contractions are performed after the cycle deletions, we can
consider contractions for each self-loop separately). Each
self-loop (v, v) corresponds to some cycle in C and let C(v,v)

be the set of the k cycles in C corresponding to the k self-
loops (v, v). Let V(v,v) be the set of vertices induced by
C(v,v) in G(C). We observe that the final weight of vertex v in
the cycle-minor C′ is equal to the weight of V(v,v) in C, and
hence it is equal to |V(v,v)|. Next, we notice that G(C(v,v))
has at least 3|C(v,v)| = 3k edges (because each cycle is of
length at least 3) and all cycles in C(v,v) are edge-disjoint.
Therefore, planarity of G(C(v,v)) implies that the number of
edges in G(C(v,v)) is at most 3 times the number of vertices
in G(C(v,v)), and hence |V(v,v)| ≥ |C(v,v)| = k.

5.3. Random walk invariant

The central notion in our analysis is that of being random
walk invariant. For that, we begin with the description of an

extension of our algorithm Random Bipartitness Exploration
to multigraphs on weighted vertex sets and with labeled
edges: Algorithm Random Bipartitness Exploration in multi-
graphs (RBEM).

Algorithm RBEM (ε, l):
• Repeat f(ε) times:

– Pick a random vertex v with probability propor-
tional to its weight

– Starting from v, run a random walk of length l
– If the random walk found an odd cycle then reject

• If none of the random walks found an odd cycle then
accept

Similarly to the previous section, we will focus on the ran-
dom walk part of the algorithm. In the following, whenever
we refer to a random walk, we will assume that the starting
vertex is chosen randomly with probability proportional to
its weight.

Definition 9 (Random walk invariant): Let r > 0 be in-
tegral and let ξ > 0 be an arbitrary constant. Let C be a set
of edge-labeled cycles on a weighted vertex set V and let
C′ be a cycle-minor of C. C′ is called (r, l, ξ)-random walk
invariant with respect to C if
• for every l-step walk E ′ = 〈x0, x1, . . . xl〉 in G(C′)

along edges with parities 〈a1, . . . , al−1〉, if the prob-
ability that RBEM(ε, l) invoked on G(C′) chooses E ′
as its random walk is p, then the probability that
RBEM(ε, rl) invoked on G(C) chooses a walk E =
〈y0, y1, . . . yrl〉 in G(C) that contains E ′ as a subwalk
(with similar parities) is at least ξ · p. Formally, there
exists a set I = {i0, i1, . . . , il} ⊆ {0, 1, . . . , rl} such
that (1) xj = yij for every j ∈ I , (2) the parity of edge
(xj , xj+1) in G(C′) is the same as the parity of the
path 〈yij , yij+1, . . . , yij+1 〉 in G(C), and (3) for every
j ∈ {0, 1, . . . , il} \ I the weight of yj is 0.

Observe that the notion of random walk invariance is
related to our claim in Lemma 5. Indeed, in Lemma 5 we
showed that in order to analyze the random walk approach in
the original graph G that is ε-far from bipartite, it is enough
to analyze the random walk approach in the subgraph of
G induced by a linear number of short odd-length cycles.
Definition 9 extends this claim and states that in order to
analyze the random walk approach in G(C) it is enough to
analyze it in a cycle-minor of C that is (r, l, ξ)-random walk
invariant with respect to C (r and ξ may depend on ε).

Furthermore, let us observe the following simple fact.
Observation 10: Let C be a set of edge-labeled cycles on

a weighted vertex set V . If C′ is a cycle-minor of C that
is (r, r′l, ξ)-random walk invariant with respect to C, and
if C′′ is a cycle-minor of C′ that is (r′, l, ξ′)-random walk
invariant with respect to C′, then C′′ is (rr′, l, ξξ′)-random
walk invariant with respect to C.

5.4. Outline of the analysis

We now give a more detailed and technical outline of the
proof. We initially assign weight 1 to every vertex in V ,
and we assign label odd to every edge in G(C). Now, we
want to perform the following reduction: In order to show
that Random Bipartitness Exploration finds (with constant
probability) an odd-length cycle in a set C of α(ε)n edge-
disjoint odd-length cycles in G, each cycle in C having
length at most �(ε), it is enough to show that for some
r = r(ε), l = l(ε) and ξ = ξ(ε) there is a cycle-minor C∗
of C that is (r, l, ξ)-random walk invariant with respect to C,
such that C∗ has a very simple form: it consists of sufficiently
many odd self-loops only. To conclude the analysis, we
observe that a 1-step random walk rejects if and only if
it finds one of the self-loops. Hence, a 1-step random walk
rejects with a constant probability if and only if the total
weight of the non-isolated vertices (loop vertices) in V is
a constant fraction of the total weight of the vertices. Now,
finally, by the Vertex-weight Lemma 8, to complete the proof
it is enough to ensure that the number of cycles in C∗ is
Ω(|V |). (Indeed, the Vertex-weight Lemma implies that the
total weight of the non-isolated vertices is at least of the
order of the number of cycles in C∗.)

In view of the outline above, the key part of our analysis
is to find set C∗ that satisfies the conditions described above.
Let us give the intuition how we find C∗: we construct
a sequence CN , CN−1, . . . , C1 of sets of labeled cycles on
weighted vertex sets V such that for values r = r(ε), ξ =
ξ(ε) that depend only on ε, the following holds:

• CN = C, N = �(ε), all edges in G(C) are odd, and
the weighted vertex set V for CN has the weight of
every vertex equal to 1,

• each set Ck consists of cycles of length at most k,
• each set Ck is a cycle-minor of Ck+1, and
• each Ck is (r, rk−1, ξ)-random walk invariant with

respect to Ck+1.

The key part of our analysis now is to transform Ck into
its cycle-minor Ck−1 that satisfies the properties described
above. We do this by using the process that we call cycle-
shortening.

5.5. Shortening cycles

We consider an edge-disjoint set of odd-length cycles
CN = C on a vertex set V such that the length of each
cycle c ∈ C is at most �(ε). We assign weight 1 to every
vertex in V , and we assign label odd to every edge in C.

Let us first describe a generic procedure of cycle-
shortening:

Cycle-shortening(set Ck of cycles of length ≤ k)

• Choose an appropriate subset C∗ of Ck such that every
cycle in C∗ has a vertex that is either a loop vertex
or is contractible.

• Perform cycle contraction at an appropriate indepen-
dent set of contractible vertices to ensure that each
cycle in C∗ other than a self-loop reduces the number
of edges.

• Return Ck−1 to be the obtained set of cycles.

(The formulation of an “appropriate” subset C∗ ⊆ Ck and
an “appropriate” independent set of contractible vertices is
used here in a generic sense and the exact choices of these
sets are explained in the analysis.)

The following is a direct implication of our construction.
Observation 11: If we start with C being a set of odd-

length cycles with the length of each cycle c ∈ C being
at most �(ε), then after applying cycle-shortening �(ε) − 1
times, we obtain a set of edge-labeled cycles C1 that is a
cycle-minor of C and such that each cycle in C1 is an odd
self-loop.

For our analysis, we want to have a construction of cycle-
shortening that additionally has two central properties: the
number of cycles in C1 should be not much smaller than
the number of cycles in C (smaller only by a constant factor
depending on ε), and there is an r∗ = r∗(ε) such that C1

is (r∗, 1, ξ)-random walk invariant with respect to C, for a
value ξ = ξ(ε) depending only on ε.

The following is our central technical lemma.
Lemma 12: Let Ck be a set of edge-labeled cycles on

a weighted vertex set V , where each cycle in Ck has
length at most k ≤ �(ε) and such that the weighted graph
representation of G(C) is planar. One can design a procedure
Cycle-shortening(Ck) with output Ck−1 such that there are
r, ξ and ζ depending only on ε, for which the following
holds:

• the number of cycles Ck−1 is at least ζ times the number
of cycles Ck, and

• Ck−1 is (r, rk−1, ξ)-random walk invariant with respect
to Ck.

We observe that by our discussion above, Observation 10
and Lemma 12 directly imply Theorem 4, and hence proves
the main result of the paper. We continue with the following
lemma whose proofs is deferred to the full version.

Lemma 13: Let C be a set of edge-labeled cycles on a
vertex set V , with each cycle in C having length at most k
and such that the weighted graph representation of G(C) is
planar. Then there is a subset C∗ ⊆ C and an independent
set Q ⊆ V in G(C∗) such that (i) every vertex from Q
is a contractible vertex with respect to C∗, (ii) every cycle
c ∈ C∗ has a contractible vertex from Q in G(C∗), (iii) after
contracting at any vertex at Q to obtain new edge(s) (x, y),
the pair 〈x, y〉 is τ -parity balanced for the obtained set of

cycles, (iv) every vertex in G(C∗) is either isolated or has
degree at least ϑ times its degree in G(C), and (v) |C∗| ≥
σ|C|, where τ, ϑ, σ are some values depending only on k.

With such a lemma, we can proceed with our algorithm:

Cycle-shortening(set Ck of edge-labeled cycles)

• Let C∗ be the set of cycles and Q contractible vertices
resulting from applying Lemma 13 to Ck

• Perform cycle contraction at contractible vertices in
Q

• Return Ck−1 to be the obtained set of cycles

We will now move to our final technical lemma that
analyzes properties of the algorithm Cycle-shortening.

Lemma 14: Let C be a set of edge-labeled cycles on a
weighted vertex set V , with each cycle in Ck having length
at most k and such that the weighted graph representation
of G(C) is planar. Then the set of cycles Ck−1 obtained
after applying Cycle-shortening(Ck) satisfies the following
conditions:

• |Ck−1| ≥ σ|Ck|, where σ is a constant dependent only
k, and

• there is ξ = ξ(k) such that Ck−1 is (r, rk−1, ξ)-random
walk invariant with respect to Ck, where r = 3.

Proof: Let us note that the first part of the lemma
follows directly from Lemma 13 and hence our main focus
is on proving the second part of the lemma. We will be using
the notation from Lemma 13.

Our proof will give ξ = ξ(k, l) = ϑ2l+1
(

τ
1+τ

)l

.

Let us fix an arbitrary walk 〈x0, x1, . . . , xl〉 in G(Ck−1).
Our goal is to compare the probability of having RBEM
on G(Ck−1) to choose the walk 〈x0, x1, . . . , xl〉 and the
probability that RBEM on G(Ck) will choose a walk with a
prefix of the form 〈?, x0, ?, x1, ?, x2, . . . , xl−1, ?, xl〉, where
we use the mark ? to denote either a vertex from Q or
nothing, and we require that for any 0 ≤ i < r, both
(xi, xi+1) and 〈xi, ?, xi+1〉 will have the same parity. (And
so, for example, 〈?, x0, ?, x1〉 denotes one of the following:
path 〈x0, x1〉, or path 〈v, x0, x1〉 with an arbitrary vertex
v ∈ Q, or path 〈x0, u, x1〉 with an arbitrary vertex u ∈ Q,
or path 〈v, x0, u, x1〉 with an arbitrary pair of vertices
v, u ∈ Q.) Such a prefix has length at most 2l + 1 ≤ rl and
therefore it may occur as the prefix of an rl-step random
walk.

Let us introduce some notation. We will use C∗ to denote
the set obtained by applying Lemma 13 on Ck. For any
vertex v ∈ V , let Ψv be the set of contractible vertices in
Q that are adjacent to v in G(C∗), let Av be the subset of
Ψv that consists of vertices that have two distinct neighbors
in G(C∗), and let Bv be the subset of Ψv that consists of
vertices that have a (one) unique neighbor in G(C∗). Clearly,
Av and Bv form a partition of Ψv. We consider the set Ck

of edge-labeled cycles on a weighted vertex set V and the

set Ck−1 of edge-labeled cycles on a weighted vertex set V ;
let weight(v) to be the weight of vertex v ∈ V for Ck and
let weight∗(v) to be the weight of vertex v ∈ V for Ck−1.
Notice that for every non-isolated vertex v in Ck−1 we have:

weight∗(v) =

= weight(v) +
1
2

∑
u∈Av

weight(u) +
∑

u∈Bv

weight(u) .

Furthermore, for any v ∈ V , let dv be the degree of v
in G(Ck), d∗v be the degree of v in G(C∗), and Dv be the
degree of v in G(Ck−1). Observe that by Lemma 13, for
every v ∈ V , either d∗v = 0 or d∗v ≥ ϑdv for a constant ϑ
that depends on k. Furthermore, if v ∈ Q, then Dv = 0, and
if Dv > 0 then Dv = d∗v .

Starting the walk: A necessary condition for RBEM on
G(Ck−1) to visit 〈x0, x1, . . . , xl〉 as a random walk starting
at x0 is that x0 is chosen (at random) as the starting vertex
of one of the random walks. Let us fix a single random walk.

We will couple this event with one of the corresponding
events for RBEM on G(Ck):

(i) x0 is chosen as the starting vertex of the fixed random
walk by RBEM on G(Ck),

(ii) a vertex u ∈ Ψx0 is chosen as the starting vertex of the
fixed random walk by RBEM on G(Ck) and then the
random walk starts at u and moves to x0 in a single
step.

Observe that the first event will happen with the probabil-
ity proportional to weight(v) and the second type of events
will happen with the probability 1

|V |
∑

u∈Ψx0
weight(u) ·

multiplicity of edge (u,v) in G(Ck)
du

. Next, we observe that for any
u ∈ Ax0 the multiplicity of edge (u, v) is equal to 1

2d∗u, and
for any u ∈ Bx0 the multiplicity of edge (u, v) is equal to
d∗u. Therefore, since Lemma 13 ensures that d∗u ≥ ϑdu, we
can show that the probability that the event will happen for
RBEM on G(C) is lower bounded by ϑ·weight∗(v)

|V | .
Therefore, to summarize, the probability that RBEM on

G(Ck−1) will start at x0 is at most 1
ϑ greater than the

probability that RBEM on G(Ck) will reach x0 in zero or
one step.

Continuing the walk: Next, we assume that the walk
reached vertex xi in both RBEM on G(Ck−1) and RBEM
on G(Ck), and we compare the probability that RBEM on
G(Ck−1) will take edge (xi, xi+1) with label χi (χi is either
odd or even) vs. the probability that RBEM on G(Ck) will
take 〈xi?, xi+1〉 with label χi.

Let mi be the number of edges (multiplicity of) (xi, xi+1)
in G(C∗) with label χi. For any v ∈ Q, let k

〈v〉
i be the

number of paths 〈xi, v, xi+1〉 in G(C∗) with label χi. Let
ki =

∑
v∈Q k

〈v〉
i . Note that mi + ki is exactly equal to the

multiplicity of edge (xi, xi+1) in G(Ck−1) with label χi.
Let us first consider RBEM on G(Ck−1). We observe that

if it starts at xi, then it chooses edge (xi, xi+1) with label
χi with probability mi+ki

Dxi
.

Next, let us consider RBEM on G(Ck). If it starts at xi,
then one way to proceed is if it will choose edge (xi, xi+1)
with label χi; this will happen with probability at least mi

dxi

(because every edge from C∗ is also present in Ck with the
same label, and so there are at least mi edges (xi, xi+1) in
G(Ck) with label χi). If it starts at xi, then we can also take
a path 〈xi, v, xi+1〉 with label χi and with v ∈ Q; this will

happen with the probability at least k
〈v〉
i

dxi
· k

〈v〉
i

dv
(and assuming

that dv > 0). Therefore, the probability that when starting
at xi, RBEM on G(Ck) will take 〈xi?, xi+1〉 with label χi

is at least mi

dxi
+

∑
v∈Q,d∗

v �=0
k
〈v〉
i

dxi
· k

〈v〉
i

dv
.

Now, by Lemma 13, we know that Dxi = d∗xi
≥ ϑdxi and

that d∗v ≥ ϑdv for every v ∈ Q. Furthermore, since the pair
〈xi, xi+1〉 is τ -parity balanced, for every v ∈ Q, we either

have d∗v = 0 or k
〈v〉
i

d∗
v

≥ τ
1+τ . Therefore we obtain that the

probability that when starting at xi, RBEM on G(Ck) will
take 〈xi?, xi+1〉 with label χi can be shown to be lower
bounded as follows:

mi

dxi

+
∑
v∈Q

k
〈v〉
i

dxi

· k
〈v〉
i

dv
≥ ϑ2τ

1 + τ
· (mi + ki)

Dxi

.

Therefore, conditioned on the walk starting at vertex xi,
the probability that RBEM on G(Ck) will take 〈xi?, xi+1〉
with label χi is at least ϑ2τ(mi+ki)

(1+τ)Dxi
, which is at least ϑ2τ

1+τ

times the probability that RBEM on G(Ck−1) will take edge
(xi, xi+1) with label χi.

We can summarize our discussion above. Let us fix an
arbitrary walk 〈x0, x1, . . . , xl〉 in G(Ck−1) and let χ be
the label of the walk. Then, by our arguments above, the
probability that RBEM on G(C) will choose a walk with
prefix 〈?, x0, ?, x1, ?, x2, . . . , xr−1, ?, xr〉 labeled χ is at

least ϑ ·
(

ϑ2τ
1+τ

)l

= ϑ2l+1 · (τ
1+τ)l times the probability that

RBEM on G(Ck−1) will choose the walk 〈x0, x1, . . . , xl〉
with label χ.

6. FURTHER RESEARCH

In this paper we proved that bipartiteness is testable in
constant time for arbitrary planar graphs. Our result was
proven via a new type of analysis of random walks in planar
graphs. Our analysis easily carries over to classes of graphs
defined by arbitrary fixed forbidden minors.

This is merely the first step that poses the following main
question:

What graph properties can be tested in constant time in
minor-free graphs?

REFERENCES

[1] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combi-
natorial characterization of the testable graph properties: it’s
all about regularity. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC) pp. 251–260,
2006.

[2] N. Alon and M. Krivelevich. Testing k-colorability. SIAM
Journal on Discrete Mathematics, 15(2):211-227, 2002.

[3] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed
property of sparse graphs is testable. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC), pp.
393–402, 2008.

[4] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for
testing 3-colorability in bounded-degree graphs. In Proceed-
ings of the 43rd IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 93–102, 2002.

[5] A. Czumaj, A. Shapira, and C. Sohler. Testing hereditary
properties of nonexpanding bounded-degree graphs. SIAM
Journal on Computing, 38(6): 2499–2510, April 2009.

[6] A. Czumaj and C. Sohler. Testing expansion in bounded-
degree graphs. In Proceedings of the 48th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 570–578,
2007.

[7] O. Goldreich, editor. Property Testing: Current Research and
Surveys. Lecture Notes in Computer Science 6390, Springer
Verlag, Berlin, Heidelberg, December 2010.

[8] O. Goldreich, S. Goldwasser, D. Ron. Property testing and
its connection to learning and approximation. Journal of the
ACM, 45(4): 653–750, July 1998.

[9] O. Goldreich and D. Ron. Property testing in bounded degree
graphs. Algorithmica, 32(2): 302–343, 2002.

[10] O. Goldreich and D. Ron. A sublinear bipartiteness tester for
bounded degree graphs. Combinatorica, 19(3):335–373, 1999.

[11] O. Goldreich and D. Ron. On testing expansion in bounded-
degree graphs. Electronic Colloquium on Computational Com-
plexity (ECCC), Report No. 7, 2000.

[12] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local
graph partitions for approximation and testing. In Proceedings
of the 50th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 22–31, 2009.

[13] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds
for testing bipartiteness in general graphs. SIAM Journal on
Computing, 33(6): 1441–1483, September 2004.

[14] P. Klein, S. Plotkin, S. Rao. Excluded minors, network
decomposition, and multicommodity flow. In Proceedings of
the 25th Annual ACM Symposium on Theory of Computing
(STOC), pp. 682–690, 1993.

[15] S. Marko and D. Ron. Approximating the distance to
properties in bounded-degree and general sparse graphs. ACM
Transactions on Algorithms, 5(2), Article No. 22, March 2009.

[16] I. Newman and C. Sohler. Every property of hyperfinite
graphs is testable. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 675–684,
2011.

[17] H. N. Nguyen and K. Onak. Constant-time approxima-
tion algorithms via local improvements. In Proceedings of
the 49th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 327–336, 2008.

